MOJ Header

Current Issue - November 2018, Volume 12, Issue No. 3

Official Journal of Malaysian Orthopaedic Association and ASEAN Orthopaedic Association

Effect of Polymethylmethacrylate-Hydroxyapatite Composites on Callus Formation and Compressive Strength in Goat Vertebral Body


  1. Mathis JM, Barr JD, Belkoff SM, Barr MS, Jensen ME, Deramond H. Percutaneous vertebroplasty: a developing standard of care for vertebral compression fractures. AJNR Am J Neuroradiol. 2001; 22(2): 373-81.
  2. Predey TA, Sewall LE, Smith SJ. Percutaneous vertebroplasty: new treatment for vertebral compression fractures. Am Fam Physician. 2002; 66(4): 611-5.
  3. Vaishya R, Chauhan M, Vaish A. Bone cement. J Clin Orthop Trauma. 2013; 4(4): 157-63.
  4. Teotia AK, Raina DB, Singh C, Sinha N, Isaksson H, Tägil M, et al. Nano-hydroxyapatite bone substitute functionalized with bone active molecules for enhanced cranial bone regeneration. ACS Appl Mater Interfaces. 2017; 9(8): 6816-28.
  5. Matsumine A, Myoui A, Kusuzaki K, Araki N, Seto M, Yoshikawa H, et al. Calcium hydroxyapatite ceramic implants in bone tumour surgery. A long term follow-up study. J Bone Joint Surg Br. 2004; 86(5): 719-25.
  6. Aghyarian S, Rodriguez LC, Chari J, Bentley E, Kosmopoulos V, Lieberman IH, et al. Characterization of a new composite PMMA-HA/Brushite bone cement for spinal augmentation. J Biomater Appl. 2014; 29(5): 688-98.
  7. Aghyarian S, Hu X, Lieberman IH, Kosmopoulos V, Kim HK, Rodrigues DC. Two novel high performing composite PMMA-CaP cements for vertebroplasty: An ex vivo animal study. J Mech Behav Biomed Mater. 2015; 50: 290-8.
  8. Smit TH. The use of a quadruped as an in vivo model for the study of the spine - biomechanical considerations. Eur Spine J. 2002; 11(2): 137-44.
  9. Pearce AI, Richards RG, Milz S, Schneider E, Pearce SG. Animal models for implant biomaterial research in bone: a review. Eur Cells Mater. 2007; 13: 1-10.
  10. Lv Y, Li A, Zhou F, Pan X, Liang F, Qu X, et al. A novel composite PMMA-based bone cement with reduced potential for thermal necrosis. ACS Appl Mater Interfaces. 2015; 7(21): 11280-5.
  11. Rodriguez LC, Chari J, Aghyarian S, Gindri IM, Kosmopoulos V, Rodrigues DC. Preparation and characterization of injectable brushite filled-poly (methyl methacrylate) bone cement. Materials (Basel). 2014; 6(9): 6779-95.
  12. Zhao H, Dong W, Zheng Y, Liu A, Yao J, Li C, et al. The structural and biological properties of hydroxyapatite-modified titanate nanowire scaffolds. Biomaterials. 2011; 32(25): 5837-46.
  13. Catros S, Guillemot F, Lebraud E, Chanseau C, Perez S, Bareille R, et al. Physico-chemical and biological properties of a nano-hydroxyapatite powder synthesized at room temperature. IRBM. 2010; 31(4): 226-33.
  14. ten Harkel B, Schoenmaker T, Picavet DI, Davison NL, De Vries TJ, Everts V. The foreign body giant cell cannot resorb bone, but dissolves hydroxyapatite like osteoclasts. PLoS One. 2015; 10(10): 1-19.
  15. Galovich LA, Perez-Higueras A, Altonaga JR, Orden JM, Barba ML, Morillo MT. Biomechanical, histological and histomorphometric analyses of calcium phosphate cement compared to PMMA for vertebral augmentation in a validated animal model. Eur Spine J. 2011; 20 Suppl 3: 376-82.
  16. González-Ocampo JI, Escobar-Sierra DM, Ossa-Orozco CP. Porous bodies of hydroxyapatite produced by a combination of the gel-casting and polymer sponge methods. J Adv Res. 2016; 7(2): 297-304.
  17. Sarkar SK, Lee BT. Hard tissue regeneration using bone substitutes: an update on innovations in materials. Korean J Intern Med. 2015; 30: 279-93.
  18. Dalby MJ, Di Silvio L, Harper EJ, Bonfield W. Initial interaction of osteoblasts with the surface of a hydroxyapatite-poly(methylmethacrylate) cement. Biomaterials. 2001; 22(13): 1739-47.
  19. Serbetci K, Korkusuz F, Hasirci N. Thermal and mechanical properties of hydroxyapatite impregnated acrylic bone cements. Polym Test. 2004; 23(2): 145-55.
  20. Tihan TG, Ionita MD, Popescu RG, Iordachescu D. Effect of hydrophilic-hydrophobic balance on biocompatibility of poly (methyl methacrylate) (PMMA)-hydroxyapatite (HA) composites. Mater Chem Phys. 2009; 118(2-3): 265-9.
  21. Kalteis T, Lüring C, Gugler G, Zysk S, Caro W, Handel M, et al. [Acute tissue toxicity of PMMA bone cements]. Z Orthop Ihre Grenzgeb. 2004; 142(6): 666-72.
  22. Zebarjad SM, Sajjadi SA, Sdrabadi TE, Sajjadi SA, Yaghmaei A, Naderi B. A study on mechanical properties of PMMA/hydroxyapatite nanocomposite. Engineering. 2011; 3(8): 795-801.
  23. Yu X, Tang X, Gohil SV, Laurencin CT. Biomaterials for bone regenerative engineering. Adv Healthcare Mater. 2015; 4(9): 1268-85.
  24. Low KL, Tan SH, Zein SH, Roether JA, Mouriño V, Boccaccini AR. Calcium phosphate-based composites as injectable bone substitute materials. J Biomed Mater Res Part B Appl Biomater. 2010; 94(1): 273-86. Leung KS, Siu WS, Cheung NM, Lui PY, Chow DH, James A, et al. Goats as an osteopenic animal model. J Bone Miner Res. 2001; 16(12): 2348-55

Abstract   |   Reference

MOJ footer

About Us

The Malaysian Orthopaedic Journal is a peer-reviewed journal that is published three times a year in both print and electronic online version. The purpose of this journal is to publish original research studies, evaluation of current practices and case reports in various subspecialties of orthopaedics and traumatology, as well as associated fields like basic science, biomedical engineering, rehabilitation medicine and nursing.

Keep in Touch

creative-commons License